Structure of the Tetrahydrogentetramolybdotetraarsenate(V)(4-) Polyanion

By Yoshiaki Takeuchi,* Akiko Kobayashi and Yukiyoshi Sasaki
Department of Chemistry, Faculty of Science, The University of Tokyo, Hongo, Tokyo 113, Japan

(Received 25 May 1981; accepted 7 July 1981)

Abstract

Na}_{4}\left[\mathrm{H}_{4} \mathrm{As}_{4} \mathrm{Mo}_{4} \mathrm{O}_{26}\right] .6 \mathrm{H}_{2} \mathrm{O}\), triclinic, $P \overline{\mathrm{I}}$, $a=10.136$ (6), $b=10.697$ (8), $c=7.744$ (5) \AA, $\alpha=111.68$ (6), $\beta=85.06$ (6), $\gamma=118.77$ (5) ${ }^{\circ}$, $U=679.6(6) \AA^{3}$, FW 1303.5, $Z=1, D_{m}=3 \cdot 18$, $D_{x}=3.19 \mathrm{Mg} \mathrm{m}^{-3}, \mu=7.065 \mathrm{~mm}^{-1}$ (for Mo Ka); $R=0.051, R_{w}=0.062$ for 3402 reflections. The structure contains the discrete heteropolyanion $\left[\mathrm{H}_{4} \mathrm{As}_{4} \mathrm{Mo}_{4} \mathrm{O}_{26}\right]^{4-}$ which consists of four MoO_{6} octahedra forming a pair of $\mathrm{Mo}_{2} \mathrm{O}_{10}$ groups and four AsO_{4} tetrahedra bridging the groups with corner sharing. Protonation at the four terminal O atoms of AsO_{4} is observed.

Introduction. A preparative description of heteropoly complexes with the ratio As: $\mathrm{Mo}=1: 1$ was reported as early as 1892 (Friedheim \& Mach, 1892). Later, Contant (1973) proposed the existence of the $1: 1$ heteropolyanion only in a strongly acidified solution containing a large excess of HAsO_{4}^{2-}, but its structure has been entirely unknown.

The sodium salt, $\mathrm{Na}_{4}\left[\mathrm{H}_{4} \mathrm{As}_{4} \mathrm{Mo}_{4} \mathrm{O}_{26}\right] .6 \mathrm{H}_{2} \mathrm{O}$, crystallized as colourless triclinic parallelepipeds from an aqueous solution ($\mathrm{pH}=2$) of the stoichiometric quantities of $\mathrm{Na}_{2} \mathrm{MoO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Na}_{2} \mathrm{HAsO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ on the addition of NaCl .

All the X-ray diffraction intensities were measured on a Philips automatic four-circle diffractometer in the $\omega-2 \theta$ scan mode using graphite-monochromated Mo $K \alpha$ radiation. The intensities were corrected for the absorption effect and 3402 independent reflections 16° $\left.<2 \theta<60^{\circ},\left|F_{o}\right|>3 \sigma\left(\left|F_{o}\right|\right)\right]$ were used. The dimensions of the crystal were $0.28 \times 0.20 \times 0.10$ mm . The structure was solved by the usual heavy-atom method. Atomic scattering factors and corrections for anomalous scattering were taken from International Tables for X-ray Crystallography (1974). Anisotropic temperature factors were applied to all the nonhydrogen atoms. Refinements were made by the block-diagonal least-squares method. The function minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$, where $w=0.2$ for $\left|F_{o}\right|<15$ and $w=1 /\left.\left|\sigma\left(\left|F_{o}\right|\right)^{2}+c\right| F_{o}\right|^{2} \mid$ otherwise. The parameter c was estimated to be 0.02 from the

[^0]0567-7408/82/010242-03\$01.00
fluctuation of the intensities of the standard reflections during the data collection and $\sigma\left(\left|F_{o}\right|\right)$ was from counting statistics. The final R and R_{x} values were 0.051 and 0.062 , respectively, where $R_{x^{\prime}}=\sum w| | F_{o} \mid-$ $\left|F_{c}\right|\left|\sum \omega\right| F_{o} \mid$. All the calculations were performed on

Table 1. Fractional coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{3}\right)$

$U_{\text {eq }}=\frac{1}{3} \check{L}_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Mo(1)	1496 (1)	3111 (1)	3942 (1)	17 (1)
$\mathrm{Mo}(2)$	3476 (1)	6818 (1)	4627 (1)	19 (1)
As(1)	2705 (1)	694 (1)	3899 (1)	22 (1)
As(2)	5076 (1)	4500 (1)	2582 (1)	14 (1)
$\mathrm{Na}(1)$	1499 (4)	4636 (4)	51 (5)	36 (2)
$\mathrm{Na}(2)$	2167 (4)	638 (4)	-575 (5)	36 (1)
O(1)	182 (5)	1597 (6)	2156 (7)	26 (2)
O(2)	514 (6)	3469 (7)	5776 (8)	34 (3)
O(3)	2459 (6)	7252 (6)	6381 (8)	30 (2)
$\mathrm{O}(4)$	3408 (7)	7690 (6)	3227 (8)	33 (3)
O(5)	1967 (5)	4761 (5)	3172 (7)	21 (2)
O(6)	2042 (5)	1941 (5)	5004 (7)	22 (2)
O(7)	5408 (6)	8475 (6)	6232 (8)	30 (2)
O(8)	3369 (5)	2971 (5)	2301 (7)	20 (2)
O(9)	5011 (6)	6099 (6)	2859 (8)	28 (2)
$\mathrm{O}(10)$	3692 (5)	5213 (5)	5802 (7)	21 (2)
O(11)	5879 (6)	4082 (6)	555 (7)	29 (2)
$\mathrm{O}(12)$	1818 (6)	-508 (6)	1810 (7)	28 (2)
$\mathrm{O}(13)$	2377 (7)	-156 (7)	5505 (9)	36 (3)
$\mathrm{Aq}(1)$	1127 (6)	6506 (6)	-421 (8)	29 (2)
$\mathrm{Aq}(2)$	1338 (6)	2151 (6)	-1405 (7)	28 (2)
$\mathrm{Aq}(3)$	4582 (8)	742 (8)	-870 (9)	46 (3)

Fig. 1. The structure of the $\left\{\left.\mathrm{H}_{4} \mathrm{As}_{4} \mathrm{Mo}_{4} \mathrm{O}_{26}\right|^{4-}\right.$ anion. The thermal ellipsoids are scaled to enclose 50% probability.
(C) 1982 International Union of Crystallography

Table 2. Interatomic distances (\AA) and angles $\left(^{\circ}\right)$ in the $\left[\mathrm{H}_{4} \mathrm{As}_{4} \mathrm{Mo}_{4} \mathrm{O}_{26}\right]^{4-}$ anion

	O (1)	$\mathrm{O}(2)$	$\mathrm{O}(5)$	O (6)	$\mathrm{O}(8)$	O(10)
Mo(1)-	1.702 (4)	1.696 (6)	1.902 (6)	2.014 (7)	2.227 (5)	2.330 (5)
$\mathrm{O}(1)-$		2.711 (8)	2.780 (7)	2.829 (9)	2.825 (7)	
$\mathrm{O}(10)-$		2.838 (7)	2.552 (9)	2.894 (7)	2.793 (7)	
$\mathrm{O}(2)-$			2.781 (9)	$2 \cdot 643$ (10)		
$\mathrm{O}(8)-$			2.764 (9)	2.683 (8)		
$\mathrm{O}(1)-\mathrm{Mo}(1)-$		105.9 (3)	100.9 (2)	98.8 (2)	90.9 (2)	165.7 (2)
$\mathrm{O}(2)-\mathrm{Mo}(1)-$			$101 \cdot 1$ (3)	90.4 (3)	161.2 (3)	88.2 (2)
$\mathrm{O}(5)-\mathrm{Mo}(1)-$				153.4 (3)	83.7 (2)	73.4 (2)
$\mathrm{O}(6)-\mathrm{Mo}(1)-$					78.3 (2)	83.2 (2)
$\mathrm{O}(8)-\mathrm{Mo}(1)-$						75.6 (2)
	O(4)	O(3)	$\mathrm{O}(5)$	O (7)	$\mathrm{O}(9)$	O(10)
Mo(2)-	1.695 (8)	1.696 (6)	1.917 (4)	1.993 (5)	$2 \cdot 212$ (7)	2.318 (7)
$\mathrm{O}(4)-$		2.668 (9)	2.731 (8)	2.821 (10)	2.800 (11)	
$\mathrm{O}(10)-$		2.885 (10)	2.552 (9)	2.951 (8)	2.781 (9)	
O(3)-			2.751 (7)	2.636 (8)		
O(9)-			2.739 (7)	2.781 (8)		
$\mathrm{O}(4)-\mathrm{Mo}(2)-$		$103 \cdot 8(3)$	98.1 (3)	99.5 (3)	90.6 (3)	164.5 (3)
$\mathrm{O}(3)-\mathrm{Mo}(2)-$			99.0 (2)	90.8 (2)	165.1 (3)	90.5 (3)
$\mathrm{O}(5)-\mathrm{Mo}(2)-$				157.2 (2)	82.8 (2)	73.4 (2)
$\mathrm{O}(7)-\mathrm{Mo}(2)-$					82.6 (2)	86.1 (2)
$\mathrm{O}(9)-\mathrm{Mo}(2)-$						75.7 (2)

Table 2 (cont.)

	$\mathrm{O}(6)$	$\mathrm{O}(7)^{\prime}$	O(12)	O(13)
As(1)-	1.698 (6)	1.690 (6)	1.637 (5)	1.720 (8)
O(6)-		$2 \cdot 857$ (8)	2.787 (7)	2.588 (11)
$\mathrm{O}(7){ }^{\prime}-$			2.710 (7)	2.732 (9)
$\mathrm{O}(12)-$				2.816 (10)
$\mathrm{O}(6)-\mathrm{As}(1)-$		114.9 (3)	113.4 (3)	98.4 (3)
$\mathrm{O}(7)^{\prime}-\mathrm{As}(1)-$			109.1 (2)	106.5 (3)
$\mathrm{O}(12)-\mathrm{As}(1)-$				114.0 (3)
	O (8)	O(9)	$\mathrm{O}(10)^{\prime}$	O(11)
As(2)-	1.672 (4)	1.677 (7)	1.684 (6)	1.714 (6)
$\mathrm{O}(8)-$		2.801 (8)	2.807 (6)	2.720 (7)
$\mathrm{O}(9)-$			$2 \cdot 803$ (11)	2.707 (9)
$\mathrm{O}(10)^{\prime}-$				2.653 (9)
$\mathrm{O}(8)-\mathrm{As}(2)-$		113.6 (3)	113.6 (3)	106.9 (2)
$\mathrm{O}(9)-\mathrm{As}(2)-$			113.1 (3)	105.9 (3)
$\mathrm{O}(10)^{\prime}-\mathrm{As}(2)-$				102.7 (3)
	Mo(1)	Mo(2)	As(1)	As(2)
$\mathrm{Mo}(1)-$		$3 \cdot 317$ (3)	$3 \cdot 342$ (3)	3.434 (3)
$\mathrm{Mo}(2)-$			6.022 (5)	3.437 (3)
As(1)-				4.077 (4)
$\mathrm{Mo}(1)^{\prime}-$	$6 \cdot 241$ (1)	$5 \cdot 267$ (1)	$6 \cdot 105$ (1)	3.719 (1)
$\mathrm{Mo}(2){ }^{-}$		6.208 (3)	3.460 (1)	3.688 (1)
As(1)'-			$7 \cdot 612$ (1)	4.300 (1)
As(2)' -				$3 \cdot 506$ (1)

The prime refers to the symmetry operation $1-x, 1-y, 1-z$.
HITAC $8800 / 8700$ and M 200 H computers at the Computer Centre of the University of Tokyo with a local version of UNICS (Sakurai, 1967). The final atomic coordinates are given in Table 1.*

[^1]

Fig. 2. A view of the crystal structure projected along the c^{*} axis.

Fig. 3. A view of the crystal structure projected along the b^{*} axis.

Discussion. The structure determination revealed a new type of heteropolymolybdate anion $\left[\mathrm{H}_{4} \mathrm{As}_{4} \mathrm{Mo}_{4} \mathrm{O}_{26}\right]^{4-}$ which consists of four MoO_{6} octahedra forming a pair of edge-shared dimers and four AsO_{4} tetrahedra bridging the $\mathrm{Mo}_{2} \mathrm{O}_{10}$ groups with corner sharing (Fig. 1). Two $\mathrm{As}(1) \mathrm{O}_{4}$ tetrahedra have two terminal O atoms but the other two $\mathrm{As}(2) \mathrm{O}_{4}$ tetrahedra have only one terminal O . Interatomic distances and angles in the $\left[\mathrm{H}_{4} \mathrm{As}_{4} \mathrm{Mo}_{4} \mathrm{O}_{26}\right]^{4-}$ anion are listed in Table 2. The anion represents a partial structure of $\left[\mathrm{H}_{6} \mathrm{As}_{6} \mathrm{~V}_{4} \mathrm{O}_{30}\right]^{4-}$ consisting of VO_{6} octahedra and AsO_{4} which contains two more tetrahedra (Durif \& Averbuch-Pouchot, 1979). The MoO_{6} octahedra are highly distorted; Mo-O distances fall into five groups according to the type of O . The average $\mathrm{Mo}-\mathrm{O}$ bond distances for these five groups are given in Table 3. Views of the crystal structure are shown in Figs. 2 and 3.

Table 4 shows $\mathrm{O}-\mathrm{O}$ distances which are shorter than $3 \AA$ and suggests hydrogen bonding through protons between two O atoms. The terminal oxygen $\mathrm{O}(11)$ bound to $\mathrm{As}(2)$ seems to be protonated and a hydrogen bond is directed to bridging oxygen $O(9)$ of the neighbouring polyanion. The protonation at $\mathrm{O}(13)$, one of two terminal O atoms attached to $\mathrm{As}(1)$, is deduced from the As-O(13) bond length ($1.720 \AA$) which is longer than As-O(12) (1.637 \AA). These data accord with the observation in the crystal structure study of $2 \mathrm{H}_{3} \mathrm{AsO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ by Worzala (1968). Another hydrogen bond is suggested between $O(13)$ and $O(4)$, a Mo-bound terminal O , of a neighbouring polyanion. The coordination spheres around the Na^{+}cations are shown in Fig. 4 and bond lengths are given in Table 5. The Na^{+}ions are bound to water molecules, O atoms bridging two Mo atoms, O atoms bridging the As and Mo atoms, terminal O atoms of $\mathrm{Mo}(1) \mathrm{O}_{6}$ octahedra, and to two terminal O atoms of $\mathrm{As}(1) \mathrm{O}_{4}$ tetrahedra. The protonated terminal $\mathrm{O}(13)$ is also coordinated to

Table 3. Comparison of the average $\mathrm{Mo}-\mathrm{O}$ distances (\AA

Table 4. Probable hydrogen-bond distances (\AA)

$\mathrm{Aq}(1)-\mathrm{O}(3)^{1}$	$2.905(9)$	$\mathrm{Aq}(3)-\mathrm{O}(4)^{\text {lv }}$	$2.937(10)$
$-\mathrm{O}(12)^{11}$	$2.767(8)$	$-\mathrm{O}(7)^{\mathrm{v}}$	$3.038(11)$
$\mathrm{Aq}(2)-\mathrm{O}(6)^{1}$	$2.765(8)$	$-\mathrm{O}(11)$	$2.920(10)$
$-\mathrm{O}(12)^{\mathrm{III}}$	$2.788(8)$	$-\mathrm{Aq}(3)^{\mathrm{vi}}$	$2.851(20)$
$\mathrm{O}(11)-\mathrm{O}(9)^{)^{v}}$	$2.776(10)$	$\mathrm{O}(13)-\mathrm{O}(4)^{\text {vii }}$	$2.917(11)$

The superscripts refer to the following symmetry operations:

(i)	$x, r y, z-1$	(v)	$x, y-1, z-1$	
(ii)	$x, 1+y$,	z	(vi)	$1-x,-y$,
(iii)	$-x,-y$,	$-z$	(vii)	$x, y-1$,
(iv)	$1-x, 1-y$,	$-z$		

Table 5. $\mathrm{Na}-\mathrm{O}$ distances (\AA) less than $3.0 \AA$

$\mathrm{Na}(1)-\mathrm{O}(5)$	$2.446(7) \AA$	$\mathrm{Na}(2)-\mathrm{O}(1)^{\text {iil }}$	$2.397(5) \AA$
$-\mathrm{O}(11)^{1}$	$2.432(7)$	$-\mathrm{O}(8)$	$2.471(6)$
$-\mathrm{Aq}(1)$	$2.359(9)$	$-\mathrm{O}(12)$	$2.486(8)$
$-\mathrm{Aq}(1)^{\text {il }}$	$2.378(6)$	$-\mathrm{O}(13)^{11}$	$2.853(8)$
$-\mathrm{Aq}(2)$	$2.401(8)$	$-\mathrm{Aq}(2)$	$2.431(10)$
		$-\mathrm{Aq}(3)$	$2.391(10)$

The superscripts refer to the following symmetry operations:

$\begin{array}{lrlrr}\text { (i) } 1-x, 1-y,-z & \text { (iii) } & -x, & -y,-z \\ \text { (ii) } & -x, 1-y,-z & \text { (iv) } & x, & y, z-1 .\end{array}$

Fig. 4. Sodium-oxygen arrangement.
$\mathrm{Na}(2) . \mathrm{Na}(1)$ is pentacoordinated and $\mathrm{Na}(2)$ is hexacoordinated and four Na^{+}ions form a unit to link polyanions and waters of crystallization.

References

Contant, R. (1973). Bull. Soc. Chim. Fr. pp. 3277-3286.
Durif, D. A. \& Averbuch-Роuchot, M. T. (1979). Acta Cryst. B35, 1441-1444.
Friedheim, C. \& Mach, F. (1892). Z. Anorg. Chem. 2, 314-401.
International Tables for X-rav Cry'stallography' (1974). Vol. IV. Birmingham: Kynoch Press.

Sakurai, T. (1967). The Universal Crystallographic Computation Program System - UNICS. Crystallographic Society of Japan.
Worzala, V. H. (1968). Acta Cryst. B24, 987-991.

[^0]: * Present address: Sumitomo Chemicals, Kitahama, Osaka 541, Japan.

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36290 (25 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

